

COMMON PRE-BOARD EXAMINATION 2023-24

Subject: MATHEMATICS STANDARD (041)

Class X

MARKING SCHEME

Time: 3 Hrs. Max. Marks: 80

General Instructions:

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	$(c) x^3 y^3$	1
2.	(d) $10x - 14y = -4$	1
3.	(c)3	1
4.	(a) $\frac{b}{a}$	1
5.	(d) 98	1
6.	(b) (3,5)	1
7.	(d) infinitely many	1
8.	(c) 5	1
9.	(d) 120 ⁰	1

10.	(a) 3cm	1
11.	(c) 3/2	1
12.	(a) 1/3	1
13.	(c) 60 ⁰	1
14.	(b) 16.8cm	1
15.	(c) 77cm ²	1
16.	(c) 9	1
17.	(b) 0.69	1
18.	(a) 0.0001	1
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
20.	(c) Assertion (A) is true but reason (R) is false.	1
	SECTION B	
	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume $5+2\sqrt{3}$ is rational, then it must be in the form of p/q where p and q are co-prime integers and $q\neq 0$ i.e $5+2\sqrt{3}=p/q$ 1/2 mark So $\sqrt{3}=\frac{p-5q}{2q}$ (i)1 mark Since p, q, 5 and 2 are integers and $q\neq 0$, HS of equation (i) is rational. But LHS of (i) is $\sqrt{3}$ which is irrational. This is not possible. This contradiction has arisen due to our wrong assumption that $5+2\sqrt{3}$ is1/2 mark rational. So, $5+2\sqrt{3}$ is irrational.	
22.	It is given that, In ΔABC and DE BC.	

	AD _ AE	1/2 mark
	$\frac{AD}{DB} = \frac{AE}{CE}$., <u>2</u> ax
	Then,	
	$\frac{AD}{7.2} = \frac{1.8}{5.4}$	
	$AD = \frac{1.8 \times 7.2}{5.4}$	1 mark
	$AD = \frac{7.2}{3}$	
	AD = 2.4 c. m.	1/2 mark
23.	We know that	
	$AQ = AR$ [Tangents from an external point on the circle are equal in length $\Rightarrow AQ = AC + CR$	h]
	But, CR = CP [Tangents from an external point on the circle are equal in length]	
	Therefore, $AQ = AC + CP \dots (i)$	
	Also, AQ = AB + BQ	1/2 mark
	But, BQ = BP [Tangents from an external point on the circle are equal in length]	
	$\therefore AQ = AB + BP \dots (ii)$	
	Adding equations (i) and (ii)	1/2 mark
	2AQ = AC + CP + BP + AB	1/2 mark
	⇒ $2AQ$ = Perimeter of $\triangle ABC$ ⇒ Perimeter of $\triangle ABC$ = 2×15 = 30 cm	1/2 mark

24. $(2+2\sin\theta)(1-\sin\theta)$ $(1+\cos\theta)(2-2\cos\theta)$ $=\frac{2(1+\sin\theta)(1-\sin\theta)}{2(1+\cos\theta)(1-\cos\theta)}$ ____(1/2m) $=\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ ----(1/2m) $=\frac{(1-\sin^2\theta)}{(1-\cos^2\theta)}$ ____(1/2m) $=\frac{\cos^2\theta}{\sin^2\theta}$ $= \cot^2\theta = \left(\frac{15}{8}\right)^2 = \frac{225}{64}$ ____(1/2m) **OR** In the given right angled triangle ____(1/2m) $\tan A = \frac{1}{\sqrt{3}}$ A = 30Given C = 90 So, "A" + "B" + "C" = "180" ----(1/2m) So , $B=60^{\circ}$

Therefore: sinAcosB+cosAsinB

 $=\sin 30^{\circ}\cos 60^{\circ}+\cos 30^{\circ}\sin 60^{\circ}$

 $=\frac{1}{2}\times\frac{1}{2}+\frac{\sqrt{3}}{2}\times\frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}=1$

____(1m)

25.

AOB is a sector of angle 60° of a circle with centre O and radius 17

If AP \perp OB and AP = 15 cm

Now we have to find the area of the shaded region.

In \triangle OPA, \angle O = 90°

By using Pythagoras theorem

$$AO^2 = AP^2 + OP^2$$

$$17^2 = 15^2 + OP^2$$

$$OP^2 = 289 - 225$$

$$OP^2 = 64$$

OP = 8 cm

-----1/2 mark

Area of shaded region = Area of sector AOBA – Area of \triangle OPA

$$=rac{x}{360} imes\pi r^2-rac{1}{2} imes b imes h$$

----1/2 mark

$$= \tfrac{60}{360} \times \tfrac{22}{7} \times 17 \times 17 - \tfrac{1}{2} \times 8 \times 15$$

----1/2 mark

$$=rac{1}{6} imesrac{22}{7} imes289-60$$

$$=151.38-60$$

$$=91.38\,{\rm cm^2}$$

----1/2 mark

Hence the area of the shaded region is 91.38 cm^2 .

OR

	The figure shows that the tangents drawn from the exterior point to a circle are equal in length.	•
	As DR and DS are tangents from exterior point D so, $DR = DS(1)$	
	As AP and AS are tangents from exterior point A so, $AP = AS(2)$	
	As BP and BQ are tangents from exterior point B so, $BP = BQ(3)$	1/2 mark
	As CR and CQ are tangents from exterior point C so, $CR = CQ(4)$	
	Adding the equation 1, 2, 3 & 4, we get	
	DR + AP + BP + CR = DS + AS + BQ + CQ	1/2 mark
	(DR + CR) + (AP + BP) = (DS + AS) + (BQ + CQ)	
	CD + AB = DA + BC	1/2 mark
	AB + CD = BC + DA	4/0
	Hence proved.	1/2 mark
	SECTION C	
	Section C consists of 6 questions of 3 marks eac	h
26.	The Number of room will be minimum if each room accomodates maximum	
20.		
	number of participants. Since in each room the same number of participants	
	are to be seated and all of them must be of the same subject. Therefore, the	
	number of participants in each room must be the HCF of 60, 84 and	
	108. The prime factorisations of 60, 84 and 108 are as under.	
	$60 = 2^2 \times 3 \times 5, 84 = 2^2 \times 3 \times 7 \text{ and } 108 = 2^2 \times 3^3$	1mark
	00 - 2 ^ 3 ^ 5, 64 - 2 ^ 3 ^ / and 100 - 2 ^ 3	
	: HCF of 60, 84 and 108 is $2^2 \times 3 = 12$	1mark
	: HCF of 60, 84 and 108 is $2^2 \times 3 = 12$ Therefore, in each room 12 participants can be seated.	1mark
	Therefore, in each room 12 participants can be seated.	1mark
		1mark 1mark

27. For given polynomial
$$x^2$$
 - $(k + 6)x + 2(2k - 1)$

Here

$$a = 1, b = -(k = 6), c = 2(2k - 1)$$

Given that;

$$\therefore \text{ Sum of zeroes} = \frac{1}{2} \text{ (product of zeroes)}$$

$$\therefore \text{ Sum of zeroes} = \frac{1}{2} \text{ (product of zeroes)}$$

$$\Rightarrow \frac{-[-(k+6)]}{1} = \frac{1}{2} \times \frac{2(2k-1)}{1}$$
 -----(1m)

$$\Rightarrow$$
 k + 6=2k-1

$$\Rightarrow$$
 6+1= 2k - k -----(1m)

$$\Rightarrow$$
 k = 7

Therefore, the value of k = 7.

28.	Let us consider,	
	One's digit of a two digit number = x and	
	Ten's digit = y	(1/2m)
	So, the number is x + 10y	
	By interchanging the digits,	
	One's digit = y and	
	Ten's digit = x	(1/2m)
	Number is y + 10x	
	As per the statement,	(1/2m)
	x + y = 12(1)	(1/2m)
	y + 10x = x + 10y + 18	
	y + 10x - x - 10y = 18	
	x - y = 2(2)	
	Adding (1) and (2), we have	
	2x = 14 or x = 7	
	On subtracting (1) from (2),	(1/2m)
	2y = 10 or y = 5	(1/2m)
	Answer:	
	Number = 7 + 10 x 5 = 57	
	OR	

	For x + 2y = 3 or x + 2y - 3 = 0		
	$a_1 = 1, b_1 = 2, c_1 = -3$ (1/2m) For $(k-1)x + (k+1)y = (k+2)$		
	or $(k-1)x + (k+1)y - (k+2) = 0$ $a_2 = (k-1), b_2 = (k+1), c_2 = -(k+2)$ (1/2m)		
	For no solution, $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ (1m)		
	$\Rightarrow \frac{1}{k-1} = \frac{2}{k+1} \neq \frac{3}{k+2}$		
	and $\frac{1}{k-1} = \frac{2}{k+1}$ $\Rightarrow \qquad k+1 = 2k-2$ (1/2m)		
	$\Rightarrow 3 = k$ $\therefore k = 3$		
29.	$T \longrightarrow Q$		
	We know that length of tangents drawn from an external point to a circle are equal		
	∴ TP = TQ(1)		
	\therefore ∠TQP =∠TPQ (angles of equal sides are equal)(2)	½ m	
	Now, PT is tangent and OP is radius.		
	$\cdot\cdot$ OP $_{\perp}$ TP (Tangent at any point pf circle is perpendicular to the radius through point of cant act)		
	∴ ∠OPT = 90°	½ m	

or, \angle OPQ + \angle TPQ = 90°

or, ∠TPQ = 90° -∠OPQ ---(3)

--½ m

--½ m

In $\triangle PTQ$

 \angle TPQ + \angle PQT + \angle QTP = 180° (: Sum of angles triangle is 180°)

or, 90° – \angle OPQ + \angle TPQ + \angle QTP = 180°

--½ m

or, $2(90^{\circ} - \angle OPQ) + \angle QTP = 180^{\circ}$ [from (2) and (3)]

--½ m

or, $180^{\circ} - 2 \angle OPQ + \angle PTQ = 180^{\circ}$

∴ ∠PTQ = 2∠OPQ

OR

Joint OT.

Let it meet PQ at the point R.

Then ΔTPQ is isosceles and TO is the angle bisector of $\angle PTO$.

[: TP = TQ = T angents from T upon the circle]

--½ m

 \therefore OT \perp PQ

: OT bisects PQ.

	PR = RQ = 4 cm	½ m
	Now,	
	OR = $\sqrt{OP^2 - PR^2} = \sqrt{5^2 - 4^2} = 3 \text{ cm}$ Now,	½ m
	$\angle TPR + \angle RPO = 90^{\circ}(\because TPO = 90^{\circ})$	
	$= \angle TPR + \angle PTR(\because TRP = 90^{\circ})$	½ m
	$\therefore \angle RPO = \angle PTR$	½ m
	\therefore Right triangle TRP is similar to the right triangle	
	PRO. [By A-A Rule of similar triangles]	
	$\therefore \frac{TP}{PO} = \frac{RP}{RO} \Rightarrow \frac{TP}{5} = \frac{4}{3}$	
	FO RO 5 3	½ m
30.	LHS: $\frac{\sin^3\theta/\cos^3\theta}{1+\sin^2\theta/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{1+\cos^2\theta/\sin^2\theta}$	1/2
	$= \frac{\sin^3\theta/\cos^3\theta}{(\cos^2\theta + \sin^2\theta)/\cos^2\theta} + \frac{\cos^3\theta/\sin^3\theta}{(\sin^2\theta + \cos^2\theta)/\sin^2\theta}$	
	$= \frac{\sin^3\theta}{\cos\theta} + \frac{\cos^3\theta}{\sin\theta}$	1/2
	$= \frac{\sin^4 \theta + \cos^4 \theta}{\cos \theta \sin \theta}$	1/2
	$= (\underline{\sin^2\theta + \cos^2\theta})^2 - 2 \underline{\sin^2\theta \cos^2\theta}$ $\cos\theta \sin\theta$	1/2
	$= \frac{1 - 2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$ $= \frac{1}{\cos\theta\sin\theta} - \frac{2\sin^2\theta\cos^2\theta}{\cos\theta\sin\theta}$	1/2
	$= \sec\theta \csc\theta - 2\sin\theta \cos\theta$ $= RHS$	1/2

31.	Class Interval Height (in cm)	Frequency fi	x_i	$u_i = \frac{x_i - a}{h}$	$\int_i u_i$	
	50-75	5	62.5	-5	-25	
	75-100	6	87.5	-4	-24	
	100-125	3	112.5	-3	-9	
	125-150	4	137.5	-2	-8	
	150-175	3	162.5	-1	-3	1
	175-200	7		0	0	
	200-225	5	212.5	1	5	
	225-250	4	237.5	2	8	
	250-275	8	262.5	3	24	
	275-300	5	287.5	4	20	
		$\sum f_i = 50$			$\sum f_i y_i$	
					=-12	table 3 marks
	Mean		$= a + \sum_{n=1}^{\infty}$ $= 187.5$	$\sum f_i u_i \times h$ $\sum f_i \times h$ $+ \frac{-12}{50} \times h$ $-6 = 18$	Fori	mula1/2 mark Correct substitution and final ans1 ½ mark
				SECTIO	N D	
		Section D	consists	of 4 que	stions of 5 m	narks each
32.	Let the number of x b ∴Original cost p If the shopkeeper 14).	ooks = Rs 80 rice of one book	$x = Rs \frac{80}{x}$			(1/2m) rchased by him would be (x +

∴New cost price of one book Rs = $\frac{80}{x+4}$ -----(1/2m

Given, Original cost price of one book - New cost price of one book = Rs 1

-----(1m)

$$\therefore \frac{80}{x} - \frac{80}{x+4} = 1$$

$$80(x+4) - 80x$$

$$\Rightarrow \frac{80(x+4)-80x}{x(x+4)}=1$$

$$\Rightarrow 80\mathsf{x} + 320 - 80\mathsf{x} = \mathsf{x}(\mathsf{x} + 4)$$

$$\Rightarrow$$
 x² + 4x = 320 -----(1m)

$$\Rightarrow x^2 + 4x = 320 = 0$$

$$\Rightarrow x^2 + 20x - 16x - 320 = 0$$

$$\Rightarrow x(x + 20x) - 16(x + 20) = 0$$

$$\Rightarrow$$
 x - 16 = 0 or x + 20 = 0

$$\Rightarrow$$
 x $-$ 16 = 0 or x $+$ 20 = 0

$$\Rightarrow {\rm x} = 16 \ {\rm Or} \ {\rm x} = -20$$

 \therefore x = 16(\because Number of books cannot be negative)

Thus, the number of books purchased by the shopkeeper is 16.

-----(1m)

Rejecting negative value and accepting positive value-----(1/2m)

OR

Let us say that the train travels from A to B with a uniform speed s km/h and time taken by the train for the journey is t hours.

The train travelled $d=180\ km$

On increasing its speed 9 km/h, it takes 1 hour less time to reach the same destination, as given in the question

$$t - 1 = \frac{180}{s+9}$$

or
$$t=rac{180}{s+9}+1$$
 ------(1m)

on comparing (1) and (2)

$$t = \frac{180}{s} = \frac{180}{s+9} + 1$$
 -----(1m)

s(189+s) = 180(s+9)

$$\Rightarrow s^2 + 189s = 180s + 1620$$

$$\Rightarrow s^2 + 9s - 1620 = 0$$

 $\Rightarrow (s - 36)(s + 45) = 0$

$$\operatorname{lf} s + 45 = 0$$

Forming Q. Eqa----(1/2m)

Factorising -----(1m)

 $\Rightarrow s = -45$

: speed can't be negative, we reject this value.

If
$$s-36=0$$

$$\Rightarrow s = 36$$
 km/h

Rejecting negative value and accepting positive value-----(1/2m)

 \therefore The speed of the train is 36 km/h.

33. Statement:

If a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio. -----(1/2m)

A ΔABC in which $DE \parallel BC$ and DE intersects AB and AC at D and E respectively.

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Join BE and CD.

Draw $EL\bot AB$ and $DM\bot AC$

$$ar(\Delta ADE) = \frac{1}{2} \times AD \times EL$$
 ---(1/2m)

$$ar(\Delta ADE) = \frac{1}{2} \times AD \times EL$$
 ---(1/2m)

$$ar(\Delta DBE) = \frac{1}{2} \times DB \times EL$$

Therefore the ratio of these two is
$$\frac{ar(\Delta ADE)}{ar(\Delta DBE)} = \frac{AD}{DB}$$
....(1)

Similarly,

$$ar(\Delta ADE) = ar(\Delta ADE) = \frac{1}{2} \times AE \times DM$$

$$ar(\Delta ECD) = \frac{1}{2} \times EC \times DM$$

Therefore the ratio of these two is
$$\frac{ar(\Delta ADE)}{ar(\Delta ECD)} = \frac{AE}{EC}$$
.....(2)

Now, ΔDBE and ΔECD being on the same base DE and between the same parallels DE and BC, we have, ___(1/2m) $ar(\Delta DBE) = ar(\Delta ECD)...........(3)$ From equations 1, 2, 3 we can conclude that $\frac{AD}{DB} = \frac{AE}{EC}$ ___(1/2m) Hence we can say that the basic proportionality theorem is proved. In ∆OPE, AB || DE (Given) : By Basic Proportionality Theorem, ---(1/2m) OA = OB...(i) AD BE Similarly, in $\triangle OEF$, BC || EF (Given) OB = OC ---(1/2m) BE CF Comparing (i) and (ii), we get $\frac{\grave{OA}}{AD} = \frac{\grave{OC}}{CF}$ ___(1/2m) Hence, AC || DF

[By the converse of BPT]

34.

Let the height of the conical part be h.

Radius of the cone = Radius of the hemisphere = r = 21 cm

The toy can be diagrammatically represented as

Volume of the cone $= rac{2}{3}\cdot$ Volume of the hemisphere

$$\therefore \frac{1}{3}\pi r^2 h = \frac{2}{3}\times\frac{2}{3}\pi r^3$$
 Formula_____(1 m)
$$\Rightarrow h = \frac{\frac{2}{3}\times\frac{2}{3}\pi r^3}{\frac{1}{3}\pi r^2}$$

$$\Rightarrow h = \frac{4}{3}r$$

$$\therefore h = rac{4}{3} imes 21 cm = 28 cm$$

Thus, surface area of the toy = Curved surface area of cone + Curved surface area of hemispher

Egu---(1/2m)

Equ---(1/2m)

$$= \pi r I + 2\pi r^2$$

$$= \pi r \sqrt{h^2 + r^2} + 2\pi r^2$$

$$= \pi r \left(\sqrt{h^2 + r^2} + 2r \right)$$

$$= \frac{22}{7} \times 21cm \left(\sqrt{(28cm)^2 + (21cm)^2} + 2 \times 21cm \right)$$

$$= 66 \left(\sqrt{784 + 441} + 42 \right) cm^2$$
Formula -----(1 m)

$$66\Big(\sqrt{1225}+42\Big)cm^2$$

$$= 66(35+42) \text{ cm}^2$$

$$= 66 \times 77 \text{ cm}^2$$

$$= 5082 \text{ cm}^2$$

Correct answer--- (1/2m)

OR

Radius of the base of cylinder $(r) = 2.8 \text{ m} = \text{Radius of the base of the cone } (r)$	
Height of the cylinder (h)=3.5 m	
Height of the cone (H)=2.1 m.	
Slant height of conical part (1)= $\sqrt{r^2+H^2}$	
$=\sqrt{(2.8)^2+(2.1)^2}$	
$=\sqrt{7.84+4.41}$	1
$=\sqrt{12.25}=3.5 \text{ m}$	1
Area of canvas used to make tent = CSA of cylinder + CSA of cone	1
$= 2 \times \pi \times 2.8 \times 3.5 + \pi \times 2.8 \times 3.5$	_
= 61.6+30.8	
$=92.4m^2$	1
	1
Cost of 1500 tents at ₹120 per sq.m	
$= 1500 \times 120 \times 92.4$	
= 16,632,000	
Share of each school to set up the tents = 16632000/50 = ₹332,640	
L	

35.	Median = 525 , so Median Class = $500 - 600$	1/2
-----	--	-----

Class interval	Frequency	Cumulative Frequency	
0-100	2	2	
100-200	5	7	
200-300	X	7+x	
300-400	12	19+x	
400-500	17	36+x	11/2
500-600	20	56+x	
600-700	у	56+x+y	
700-800	9	65+x +y	
800-900	7	72+x+y	
900-1000	4	76+x+y	

$$76+x+y=100 \Rightarrow x+y=24 \dots (i)$$

$$Median = 1 + \frac{\frac{n}{2} - cf}{f} \times h$$

Since, l=500, h=100, f=20, cf=36+x and n=100

Therefore, putting the value in the Median formula, we get;

$$525 = 500 + \frac{50 - (36 + x)}{20} \times 100$$

so
$$x = 9$$

$$y = 24 - x$$
 (from eq.i)

$$y = 24 - 9 = 15$$

Therefore, the value of
$$x = 9$$
 and $y = 15$.

	SECTION E				
36.	Case study 1:				
	(i)				
	$\sin 60^\circ = \frac{PC}{PA}$	1/2m			
	$\Rightarrow \frac{\sqrt{3}}{2} = \frac{18}{PA} \Rightarrow PA = 12\sqrt{3} \text{ m}$	1/2 m			
	(ii)				
	$\sin 30^{\circ} = \frac{PC}{PB}$	1/2m			
	$\Rightarrow \frac{1}{2} = \frac{18}{PB} \Rightarrow PB = 36 \text{ m}$	1/2 m			
	(iii)				
	$\tan 60^\circ = \frac{PC}{AC} \Rightarrow \sqrt{3} = \frac{18}{AC}$				
	\Rightarrow AC = 6 $\sqrt{3}$ m	1/2 m			
	$\tan 30^\circ = \frac{PC}{CB} \Rightarrow \frac{1}{\sqrt{3}} = \frac{18}{CB}$	1/2m			
	\Rightarrow CB = 18 $\sqrt{3}$ m	1/2m			
	Width AB = AC + CB = $6\sqrt{3}$ + $18\sqrt{3}$ = $24\sqrt{3}$ m	1/2 m			
	ог				
	RB = PC =18 m &				
	$PR = CB = 18\sqrt{3} m$	1/2 m			
	$\tan 30^\circ = \frac{QR}{PR} \Rightarrow \frac{1}{\sqrt{3}} = \frac{QR}{18\sqrt{3}}$	1/2m			
	⇒ QR = 18 m	1/2m			
	QB = QR + RB = 18 + 18 = 36m.	1/2 m			
	Hence height BQ is 36m				

37.	Case Study – 2	
	i)	
	Since the production increases uniformly by a fixed number every year, the number of Cars manufactured in 1st, 2nd, 3rd,, years will form an AP. So, $a+3d=1800\ \&\ a+7d=2600$ So $d=200\ \&\ a=1200$	1/2 1/2
	ii)	
	$t_{12} = a + 11d$ $\Rightarrow t_{12} = 3400$	1/ ₂ 1/ ₂
	iii) $S_{n} = \frac{n}{2} [2a + (n-1)d] \Rightarrow S_{10} = \frac{10}{2} [2 \times 1200 + (10-1) \times 200]$	1/2
	$\Rightarrow S_{10} = \frac{13}{2} [2 \times 1200 + 9 \times 200]$ $\Rightarrow S_{10} = 5 \times [2400 + 1800]$ $\Rightarrow S_{10} = 5 \times 4200 = 21000$ [OR]	1/2 1/2 1/2 1/2
	Let in n years the production will reach to 31200 $S_n = \frac{n}{2}[2a + (n-1)d] = 31200 \Rightarrow \frac{n}{2}[2 \times 1200 + (n-1)200] = 31200$	1/2
	$\Rightarrow \frac{n}{2} [2 \times 1200 + (n-1)200] = 31200 \Rightarrow n [12 + (n-1)] = 312$ $\Rightarrow n^2 + 11n - 312 = 0$	1/2
	\Rightarrow n ² + 24n - 13n -312 = 0 \Rightarrow (n +24)(n -13) = 0	1/2
	\Rightarrow n = 13 or – 24. As n can't be negative. So n = 13	1/2
38.	Case Study 3	
	 i) P(4,6), Q(3,2), R(6,5)plotting coordinates ½ m and three coordinates ½ mark each ii) P(-6,6)plotting coordinates taking D as origin ½ m and finding coordinate of P, ½ m iii) Midpoint of PR=(5, 5.5)midpoint formula ½ m and correct answer 1½ m [OR] 	
	$PQ=\sqrt{(4-3)^2+(6-2)^2}=\sqrt{17}$ distance formula ½ m and correct answer 1 ½ m	